Bir düzlemde birbirinden farklı ve herhangi üçü doğrusal olmayan A1, A2, A3, … gibi n tane (n ³ 3) noktayı ikişer ikişer birleştiren doğru parçalarının oluşturduğu kapalı şekillereçokgen denir.
a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir.
b. Dışbükey (konveks) çokgenler: Kenar doğrularının hiçbiri, çokgeni kesmiyorsa bu çokgenlere denir.dışbükey çokgen
![]() |
c. Çokgenlerin elemanları
| ![]() |
- İç bölgede kenarlar arasında oluşan açılara çokgenin iç açıları denir.
- İç açılara komşu ve bütünler olan açılara çokgenin dış açıları denir.
- Köşeleri birleştiren kenarlar haricindeki doğru parçalarına köşegen adı verilir.
2. Dışbükey Çokgenlerin Özellikleri
a. İç açılar toplamı: Dış bükey bir çokgenin n tane kenarı var ise iç açılarının toplamı
(n – 2) . 180° |
Üçgen için (3 – 2) . 180° = 180°
Dörtgen için (4 – 2) . 180° = 360°
Beşgen için (5 – 2) . 180° = 540°
b. Dış açılar toplamı: Bütün dışbükey çokgenlerde,
Dış açılar toplamı =360° |
c. Köşegenlerin sayısı: n kenarlı dışbükey bir çokgenin
![]() |
Bir köşeden (n – 3) tane köşegen çizilebilir.
- n kenarlı dışbükey bir çokgenin içerisinde, bir köşeden köşegenler çizilerek
(n – 2) adet üçgen elde edilebilir.
3. Düzgün Çokgenler
Bütün kenarlarının uzunlukları eşit ve bütün açılarının ölçüleri eşit olan çokgenlere düzgün çokgen denir.
![]() |
a. şekildeki düzgün altıgende olduğu gibi düzgün çokgenlerin köşelerinden daima bir çember geçer. Bu çembere çevrel çember denir. | ![]() |
b. Düzgün çokgenlerde eşit sayıda kenarı birleştiren köşegenler birbirine eşittir.
![]() |
c. Kenar sayısı çift olan düzgün çokgenlerde karşılıklı kenarlar paraleldir.
![]() [AF] // [CD], [AB] // [ED]….[AH] // [DE], [AB] // [FE]… |
d. Kenar sayısı tek olan düzgün çokgenlerde karşı kenara çizilen dik karşı kenarı ortalar. Köşeden kenarın ortasına çizilen doğru parçası kenara diktir şeklinde de ifade edilir.
![]() |
e. n kenarlı düzgün bir çokgende
![]() |
f. Konveks çokgenlerin dış açıları toplamı 360° olduğundan düzgün çokgenin bir dış açısı
![]() |
4. Düzgün Çokgenin Alanı
a. n kenarlı düzgün çokgenin bir kenarı a ve içteğet yarıçapı r ise alanı
| ![]() |
b.n kenarlı bir düzgün çokgende bir kenarı gören merkez açı
| ![]() |
Bir kenarına a dersek
| ![]() |